

Mark Scheme (Results)
June 2011

GCE Chemistry (6CH04) Paper 01 General Principles of Chemistry

Edexcel is one of the leading examining and awarding bodies in the UK and throughout the world. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers.

Through a network of UK and overseas offices, Edexcel's centres receive the support they need to help them deliver their education and training programmes to learners.

For further information, please call our GCE line on 08445760025 , our GCSE team on 0844576 0027, or visit our website at www.edexcel.com.

If you have any subject specific questions about the content of this Mark Scheme that require the help of a subject specialist, you may find our Ask The Expert email service helpful.

Ask The Expert can be accessed online at the following link: http://www.edexcel.com/Aboutus/contact-us/

Alternatively, you can contact our GCE Science Advisor directly by sending an email to ScienceSubjectAdvisor@EdexcelExperts.co.uk. You can also telephone 08445760037 to speak to a member of our subject advisor team.

June 2011
Publications Code UA027566
All the material in this publication is copyright
© Edexcel Ltd 2011

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.
- Mark schemes will indicate within the table where, and which strands of QWC, are being assessed. Questions labelled with an asterix (*) are ones where the quality of your written communication will be assessed.

Using the Mark Scheme

Examiners should look for qualities to reward rather than faults to penalise. This does NOT mean giving credit for incorrect or inadequate answers, but it does mean allowing candidates to be rewarded for answers showing correct application of principles and knowledge. Examiners should therefore read carefully and consider every response: even if it is not what is expected it may be worthy of credit.

The mark scheme gives examiners:

- an idea of the types of response expected
- how individual marks are to be awarded
- the total mark for each question
- examples of responses that should NOT receive credit.
/ means that the responses are alternatives and either answer should receive full credit.
() means that a phrase/word is not essential for the award of the mark, but helps the examiner to get the sense of the expected answer.
Phrases/words in bold indicate that the meaning of the phrase or the actual word is essential to the answer.
ecf/TE/cq (error carried forward) means that a wrong answer given in an earlier part of a question is used correctly in answer to a later part of the same question.

Candidates must make their meaning clear to the examiner to gain the mark. Make sure that the answer makes sense. Do not give credit for correct words/phrases which are put together in a meaningless manner. Answers must be in the correct context.

Quality of Written Communication

Questions which involve the writing of continuous prose will expect candidates to:

- write legibly, with accurate use of spelling, grammar and punctuation in order to make the meaning clear
- select and use a form and style of writing appropriate to purpose and to complex subject matter
- organise information clearly and coherently, using specialist vocabulary when appropriate.
Full marks will be awarded if the candidate has demonstrated the above abilities.
Questions where QWC is likely to be particularly important are indicated (QWC) in the mark scheme, but this does not preclude others.

Section A (multiple choice)

Question Number	Correct Answer	Mark
1	C	1
Question Number	Correct Answer	Mark
2	D	1
Question Number	Correct Answer	Mark
3	A	1
Question Number	Correct Answer	Mark
4	A	1
Question Number	Correct Answer	Mark
5	B	1
Question Number	Correct Answer	Mark
6	C	1
Question Number	Correct Answer	Mark
7	C	1
Question Number	Correct Answer	Mark
8 (a)	C	1
Question Number	Correct Answer	Mark
8 (b)	D	1
Question Number	Correct Answer	Mark
8 (c)	B	1
Question Number	Correct Answer	Mark
9	A	1
Question Number	Correct Answer	Mark
10 (a)	D	1

Question Number	Correct Answer	Mark
10 (b)	A	1
Question Number	Correct Answer	Mark
10 (c)	D	1
Question Number	Correct Answer	Mark
11 (a)	C	1
Question Number	Correct Answer	Mark
11 (b)	D	1
Question Number	Correct Answer	Mark
11 (c)	B	1
Question Number	Correct Answer	Mark
12	B	1
Question Number	Correct Answer	Mark
13	A	1
Question Number	Correct Answer	Mark
14	D	1

Section B

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$	Addition (1) (a)(i)	Nucleophilic (1) Either order	SN1 SN2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$ (a)(ii)	Hydrogen cyanide / HCN (1) Potassium cyanide / KCN/ sodium cyanide/ NaCN (1) OR Potassium cyanide / KCN (1) With hydrochloric acid / sulfuric acid (to generate HCN) (1) Ignore concentration of acids Mark for HCl etc is consequential on KCN ORJust CN Hydrogen cyanide / HCN (1) Hast acid/ H^{+} With sodium hydroxide / other base (to make cyanide ions) (1) Mark for NaOH etc is consequential on HCN	Just OH^{-}	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 15 \\ & \text { (a) (iii) } \end{aligned}$	 (1) (1) (1) Both arrows in first step of mechanism above correctly drawn (1) Correct intermediate with charge Both arrows in second step with correct organic product (CN^{-}is not required) (1) Use of HCN for first step max 2 marks Allow omission of lone pair on CN^{-}and O^{-} Allow curly arrow from negative charge or elsewhere on cyanide ion Allow arrow from O^{-}in $2^{\text {nd }}$ step to H^{+}(no other product or only one product) or $\mathrm{H}_{2} \mathrm{O}$ (with OH^{-} formed)	$\mathrm{C}=\mathrm{O}$ breaking before attack by CN^{-} Arrows from atoms when they should be from bonds and vice versa	3

Question Number	Acceptable Answers	Reject	Mark
*15	Attack (by nucleophile on the C) is from both (a)(iv) planar reaction above and below (at the in the aldehyde group) (1)	Attack on intermediate in reaction mechanism is from both sides Attack from both ends/two angles	$\mathbf{2}$
	So a mixture of two enantiomers/(optical) isomers in equal proportions forms OR racemic mixture forms (1) First and second marks are independent	Just "both enantiomers form"	

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 5}$ (b)	Any named (aqueous) strong acid or its formula.	Water			
H^{+}	$\mathbf{1}$				
	Potassium dichromate + sulfuric acid (aqueous) sodium hydroxide followed by named acid or formula Ignore references to concentration	Carboxylic acids		\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$	2-hydroxypropanoic acid	2- hydroxylpropanoic acid 2-	$\mathbf{1}$
hydroxopropanoic			
acid			
2-hydroxypropan-			
1-oic acid			

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 15 \\ & (c)(i i) \end{aligned}$	 OR All bonds in ester link must be shown More than 2 units may be shown but structure shown should be a repeat unit Ignore brackets/n	A dimer Missing H atoms Missing bonds at ends	1

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 15 \\ & (c)(i i i) \end{aligned}$	Ester (link/bond) in PLA can be hydrolysed/broken down (by enzymes) OR Ester (link/bond) in PLA can be broken down	Just "it can be hydrolysed"	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 5}$	Ethene is (from crude oil so) non-renewable/ (c)(iv) is from a renewable source/ energy required to make ethene is high/ high temperatures needed to make ethene/ energy requirements for process from sour milk less/ process from milk doesn't use toxic chemicals / process from milk doesn't use cyanide	Milk is more readily available Greater atom economy No other chemicals needed in process from milk	$\mathbf{1}$
Allow process from ethene requires many steps so expensive/so loss of material occurs at each step /so more reagents needed	Just "process from ethene requires many steps"		
Ignore references to cost, unless answer gives a reason for lower cost.	Just "cheaper"		

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l} \hline 16 \\ (a)(i) \end{array}$	$\mathbf{O}_{\mathbf{2}}$: first order as increasing [O_{2}] $\times 2$ increases rate $\times 2 /$ as rate is (directly) proportional to oxygen concentration (1) (Experiments 1 and 2 or [NO] constant) NO: second order as increasing [NO] $\times 2$ increases rate $\times 4 /$ by 2^{2} (1) (Experiments 2 and 3 or [O_{2}] constant) Two correct orders with no explanation (1) only	Two correct orders based on stoichiometry	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ (a)(ii)	Rate $=\mathrm{k}\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}$ Rate equation must be consistent with answer in (a)(i)	Just k $\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2}$ i.e. no rate/R	$\mathbf{1}$
Non square brackets			

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 16 \\ & \text { (a)(iii) } \end{aligned}$	$\begin{aligned} & \text { Rate }=\mathrm{k}\left[\mathrm{O}_{2}\right][\mathrm{NO}]^{2} \\ & \mathrm{TE} \text { from }(\mathrm{i}) \\ & \mathrm{k}=\left(\left(5.10 \times 10^{-4}\right) /(0.005)(0.0125)^{2}\right)=652.8 \\ & / 653 / 650 \\ & \mathrm{OR} \\ & \mathrm{k}=\left(\left(10.2 \times 10^{-4}\right) /(0.0100)(0.0125)^{2}\right)=652.8 \\ & / 653 / 650 \\ & \mathrm{OR} \\ & \mathrm{k}=\left(\left(40.8 \times 10^{-4}\right) /(0.0100)(0.025)^{2}\right)=652.8 \\ & / 653 / 650 \\ & \quad(\mathbf{1}) \end{aligned}$ TE for value of k from rate equation given $\mathrm{dm}^{6} \mathrm{~mol}^{-2} \mathrm{~s}^{-1}$ (allow any order) (1)		2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 6}$ $\mathbf{(b) (i)}$	$\mathrm{NO}_{2}+\mathrm{CO} \rightarrow \mathrm{NO}+\mathrm{CO}_{2}$ Allow multiples	Equation not cancelled down eg NO_{3} on both sides.	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 16 \\ & \text { (b) (ii) } \end{aligned}$	$\begin{align*} & \text { Rate }=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2} \\ & \text { OR Rate }=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}[\mathrm{CO}]^{0} \\ & \text { OR Rate }=\mathrm{k}\left[\mathrm{NO}_{2}\right]^{2}[\mathrm{CO}]^{0}\left[\mathrm{NO}_{3}\right]^{0} \tag{1} \end{align*}$ Only molecules/reactant in slow step are (2) NO_{2} OR CO appears after the rate determining/slow step (and $2 \mathrm{NO}_{2}$ molecules in slow step) OR CO is not involved in rate determining / slow step OR Only the molecules in the slow step are in the rate equation OR Step 1 is slowest so determines rate equation (1) Second mark: No TE on rate equation containing incorrect species. Only allow TE if k missing in correct rate equation	Equations involving CO to power other than zero	2

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l\|} \hline 17 \\ (a)(i) \end{array}$	$\begin{aligned} & \Delta S_{\text {system, }}=((2 \times 192.3)-(2 \times 95.8)- \\ & (2 \times 3 \times 65.3))(\mathbf{1}) \\ & =-\mathbf{1 9 8 . 8} / \mathbf{- 1 9 9}\left(\mathrm{J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right) \\ & \text { Allow }-200(2 \mathrm{SF}) \end{aligned}$ If units are not those in which data is given, must be correct. (1) Note check working Correct answer without working (2) Correct choice of multiples and data but wrong answer scores first mark (1) Correct value with wrong sign based on entropy of reactants - entropy of products (giving +199) (1) TE for second mark if multiples for hydrogen, nitrogen and ammonia are missed/ incorrect, but correct data used. or multiples correct and one error in data.	198	2

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$	If answer to (a)(i) is negative: (a)(ii) (reaction goes forward) (1) Reference to order or disorder required for the mark. As number of (gas)molecules/moles/particles decreases (1) OR 4 moles of gas produces 2 moles Ignore comments on number of different types of molecule in equilibrium mixture If answer to (a)(i) is positive: Must say this is unexpected with correct reasons to score 2 marks No marks if the positive answer is expected	Just "entropy decreases"	$\mathbf{2}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l} \hline 17 \\ (b)(i) \end{array}$	$\begin{aligned} & \Delta \mathrm{S}_{\text {surr }}=-(-110.2 \times 1000) / 700(\mathbf{1}) \\ & (+157.4285) \\ & =(+) \mathbf{1 5 7 . 4 / 1 5 7 (\mathrm { J } \mathrm { mol } ^ { - 1 } \mathrm { K } ^ { - 1 })} \\ & \mathrm{OR}(+) 0.1574 / 0.157 \mathrm{~kJ} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \mathbf{(1)} \end{aligned}$ Ignore sf except 1 Correct answer without working (2) Correct value with negative sign (1) Use of $\Delta \mathrm{S}_{\text {surr }}=-\Delta \mathrm{H} / \mathrm{T}$ but wrong answer (1)		2

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 17 \\ & \text { (b) (ii) } \end{aligned}$	$\begin{aligned} & \left(\Delta \mathrm{S}_{\text {system }}=\Delta \mathrm{S}_{\text {total }}-\Delta \mathrm{S}_{\text {surr }}\right) \\ & =(-78.7-157.4)) \\ & =-236.1 /-236(\mathrm{~J} \mathrm{~mol} \\ & \text { OR }-0.2361 /-0.236\left(\mathrm{KJ} \mathrm{~mol}^{-1}\right) \\ & \text { Allow }-235.7 \text { if } 157 \text { used and }-238.7 \text { if } 160 \\ & \text { used } \\ & \text { Ignore units unless value in } \mathrm{kJ} \text { given as J or } \\ & \text { vice versa } \\ & \text { TE from (b)(i) } \end{aligned}$	values in kJ added to values in J	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$	Reactants predominate / more nitrogen and hydrogen (than ammonia)	Just "Equilibrium lies to the left"	$\mathbf{1}$
(b)(iii)		Just "no ammonia is present".	
The gases are			
present in ratio			
$1: 3: 2$			

Question Number	Acceptable Answers	Reject	Mark
$\begin{array}{\|l} \hline 17 \\ (c)(i) \end{array}$	$\mathrm{K}_{\mathrm{p}}=\left(\mathrm{pNH}_{3}\right)^{2} /\left(\mathrm{pN}_{2}\right)\left(\mathrm{pH}_{2}\right)^{3} \text { (1) }$ Can be written in other formats eg $\mathrm{p}^{2} \mathrm{NH}_{3}$ etc $\begin{aligned} & \mathrm{pH}_{2}=(150-21-36)=\mathbf{9 3}(\mathrm{atm}) \mathbf{(1)} \\ & \mathrm{K}_{\mathbf{p}}=\left((36)^{2} /(21)(93)^{3}\right)=(7.6724994 \times \\ & \left.10^{-5}\right) \\ & =\mathbf{7 . 6 7 \times 1 0 ^ { - 5 }} \mathbf{(1)} \end{aligned}$ $\text { I gnore sf except } 1$ TE on incorrect pH_{2} $\mathrm{atm}^{-2} \text { (1) }$ TE for units on incorrect $\mathbf{K}_{\mathbf{p}}$ expression Correct answer including units without quoting K_{p} expression scores 3	Square brackets in first mark No TE for value on incorrect $\mathbf{K}_{\mathbf{p}}$ Expression Units other than atm	4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$ (c)(ii)	(Yield of ammonia is increased) because there are fewer moles / molecules (of gas) on the right	Just ‘equilibrium moves right'	$\mathbf{1}$
OR	System tries to reduce the pressure by going to the side with fewer moles/ molecules (of gas) Ignore comments about value of $\mathbf{K}_{\mathbf{p}}$ changing Ignore comments about more collisions occurring/more molecules having energy greater than or equal to activation energy		

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & \hline \text { *17 } \\ & \text { (c)(iii) } \end{aligned}$	First mark At higher temperature $\Delta \mathrm{S}_{\text {surr }}$ is less positive/ decrease/more negative (1) Second mark making $\Delta \mathrm{S}_{\text {total }}$ more negative / less positive/decreases No TE for $2^{\text {nd }}$ mark if $\Delta \mathrm{S}_{\text {surr }}$ is said to increase. (1) Third mark (so) K_{p} decreases (1) Third mark depends on second mark being correct/ neutral answer Fourth mark so equilibrium position further left / in endothermic direction/ in reverse direction OR lower yield of ammonia / reaction is less feasible (1) Fourth mark is a stand alone mark		4

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 7}$	Rate (of reaching equilibrium) is higher / faster (c)(iv)	Ignore comments about increasing numbers of successful collisions at higher temperature	

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8 (a)}$	$K_{\mathrm{a}}=\left(10^{-10.64}\right)=\mathbf{2 . 3} \times \mathbf{1 0}^{-\mathbf{1 1}} / 2.2909 \times 10^{-11}$ $\left(\mathrm{~mol} \mathrm{dm}^{-3}\right)$ Ignore sf except 1	$\mathbf{1}$	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 18 \\ & \text { (b) (i) } \end{aligned}$	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{HCOO}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HCOOH}]}$ OR written as HCO_{2}^{-}and $\mathrm{HCO}_{2} \mathrm{H}$ OR with $\mathrm{H}_{3} \mathrm{O}^{+}$instead of H^{+} Allow $\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{A}^{-}\right]\left[\mathrm{H}^{+}\right]}{[\mathrm{HA}]}$ if formula of HA and A^{-}given as HCOOH and HCOO^{-}	$\mathrm{K}_{\mathrm{a}}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{[\mathrm{HCOOH}]}$ without also giving full expression	1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ (b)(ii)	$1.6 \times 10^{-4}=\frac{\left[\mathrm{H}^{+}\right]^{2}}{0.50} \quad$ (1) $\left[\mathrm{H}^{+}\right]=\sqrt{ } 1.6 \times 10^{-4} \times 0.5$ (1) $\left(=\sqrt{ } 8 \times 10^{-5}=8.94 \times 10^{-3}\right)$ $\mathrm{pH}=(2.048455)=\mathbf{2 . 0 5} / \mathbf{2 . 0}(\mathbf{1)}$ Correct answer with no working (3) TE for third mark if $\left[\mathrm{H}^{+}\right]$calculated incorrectly No TE from incorrect K_{a} expression lgnore sf except 1	$\mathrm{pH}=2$ $\mathrm{pH}=2.1$	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 18 \\ & \text { (b) (iii) } \end{aligned}$	All H^{+}comes from acid / none from water / $\left[\mathrm{H}^{+}\right]=\left[\mathrm{HCOO}^{-}\right]$ OR $\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]$ OR Dissociation of acid is negligible / very small OR	K_{a} is measured at 298K Just "dissociation of acid is partial"	1

Question	Acceptable Answers	Reject	Mark
Number	HCOOH		$\mathbf{1}$
$\mathbf{1 8}$			
$\mathbf{(c) (i)}$	$\mathrm{CH}_{3} \mathrm{COOH}_{2}{ }^{+}$ both correct (1)		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 8}$ $\mathbf{(c) (i i)}$	$\left(\mathrm{HIO}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons\right) \mathrm{H}_{2} \mathrm{IO}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-} \quad /$ $\left(\mathrm{HIO}+\mathrm{CH}_{3} \mathrm{COOH} \rightleftharpoons\right) \mathrm{HIOH}^{+}+\mathrm{CH}_{3} \mathrm{COO}^{-}$ Ignore position of positive charges		$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
18 (d)	$(\mathrm{pH}=4.9) \text { so }\left[\mathrm{H}^{+}\right]=\left(1.2589254 \times 10^{-5}\right)$		2
	$\left(\frac{\mathrm{K}_{\mathrm{a}}}{\left[\mathrm{H}^{+}\right]}=\frac{\left[\mathrm{HCOO}^{-}\right]}{[\mathrm{HCOOH}]}\right.$		
	$=\frac{1.6 \times 10^{-4}}{1.259 \times 10^{-5}}$		
	$=12.7 \text { (:1) / 13(:1) (HCOO per }$ HCOOH or base:acid)		
	(12.709252 from unrounded $\left[\mathrm{H}^{+}\right.$] 12.708499 from $\left[\mathrm{H}^{+}\right]$rounded to 1.259×10^{-5} 12.3 from $\left[\mathrm{H}^{+}\right]$rounded to 1.3×10^{-5}) TE from error in $\left[\mathbf{H}^{+}\right]$		
	Allow 800:63 (1)		
	Correct answer scores 2		
	Accept (0.0786828) $=\mathbf{0 . 0 7 9} \mathbf{~ H C O O H}$ per		
	$(0.0786874)=0.079$ from rounded pH		
	OR $\mathrm{pK}_{\mathrm{a}}=-\log \mathrm{K}_{\mathrm{a}}=3.79$		
	$\begin{equation*} 3.79=4.9-\frac{\log [\text { base }]}{[\text { acid }]} \tag{1} \end{equation*}$		
	$\log \frac{[\text { base }]}{[\text { acid }]}=1.11$		
	$\begin{equation*} \frac{[\text { base }}{[\text { acid }]}=(12.882496)=12.9(: \mathbf{1}) \tag{1} \end{equation*}$		
	Correct answer scores 2		
	Accept 0.0776/ 0.078 HCOOH per HCOO for acid:base ratio (0.0776247)		
	TE from error in pK_{a} Ignore sf except 1		

Section C

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (a)	Alcohol; (2)-methylpropan-2-ol (1)	Formula of alcohol	$\mathbf{2}$
Catalyst: sulfuric acid OR any named strong acid Ignore concentration of acid (1) Accept formula for acid	Just acid $/ \mathrm{H}^{+}$for catalyst		

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (b)(i)	Tap funnel / separating funnel	Buchner funnel Filter funnel	$\mathbf{1}$

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 19 \\ & \text { (b) (ii) } \end{aligned}$	To neutralize / remove/ react with (excess) acid Allow To neutralize / remove / react with (excess) H^{+} To remove acidic impurities To remove ethanoic acid To remove the acid (used as a) catalyst I gnore additional comments on quenching or reaction stopping	To purify it To remove excess acid and alcohol Just "to quench acid catalyst/stop reaction"	1

Question Number	Acceptable Answers	Reject	Mark		
$\mathbf{1 9}$	Add (anhydrous) calcium chloride/ sodium sulfate/ magnesium sulfate/ (b) (iii)	Conc. sulfuric acid Anhydrous copper sulphate Just "silica"	$\mathbf{1}$		
	Allow silica gel formulae of drying agents			\quad	
:---					

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (b)(iv)	Round bottomed or pear-shaped flask + still head with stopper or thermometer + heat source (1) This mark cannot be given if apparatus is completely sealed /large gaps between components Downwards sloping condenser (with correct water flow) + collection vessel (1)	Conical flask Flat bottomed flask	$\mathbf{3}$
Thermometer in correct position with bulb opposite condenser opening (1)	Ignore fractionating column if included between flask and condenser		

Question Number	Acceptable Answers	Reject	Mark
* 19 (c)	First mark (Two signals so) two hydrogen environments (1) This mark may be gained by a description of the only two environments, but reference to hydrogen must be made. Second mark (Numbers of hydrogen in each environment are/ are predicted to be) in ratio 3:9 or 1:3 OR Peak due to $\left(\mathrm{CH}_{3}\right)_{3}$ is $3 x$ higher than peak due to CH_{3} (1) Third mark Environments are $\mathrm{CH}_{3} \mathrm{COO}$ and $\left(\mathrm{CH}_{3}\right)_{3}$ (H may have been specified in first marking point) These may be shown on a diagram of the formula of the molecule OR $\mathrm{H}-\mathrm{C}-\mathrm{C}=\mathrm{O}$ (peak at 2.1) and $\mathrm{H}-\mathrm{C}-\mathrm{C}$ (peak at 1.3) (1) Fourth mark Singlets/ no splitting as no H on adjacent C OR Singlets as the hydrogen environments are not adjacent to other H environments Allow "only one peak" for no splitting (1)	Just "the peaks are due to $\left(\mathrm{CH}_{3}\right)_{3}$ and CH_{3}	4
Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 19 \\ & \text { (d) (i) } \end{aligned}$	$\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ Or correctly displayed Allow $\mathrm{CH}_{3} \mathrm{COOCH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{3}$		1

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$	The H on the $\mathrm{CH}_{3} \mathrm{COO}$		$\mathbf{1}$
$\mathbf{(d) (i i)}$	Accept circle round all of first methyl group Accept a hydrogen in this environment if rest of molecule is incorrect	Circle round C of first methyl group	

Question Number	Acceptable Answers	Reject	Mark
$\begin{aligned} & 19 \\ & \text { (e) (i) } \end{aligned}$	Any acid with $6 \mathrm{C}(5 \mathrm{C}+\mathrm{COOH})$ which is chiral, so will have a branched chain $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH}$ OR $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{COOH}$ OR $\begin{equation*} \left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}\left(\mathrm{CH}_{3}\right) \mathrm{COOH} \tag{1} \end{equation*}$ Infrared indicates ($\mathrm{O}-\mathrm{H}$ present in a) carboxylic acid (1) High boiling temperature due to hydrogen bonding (between atoms in OH groups so not an ester.) Hydrogen bonds must be possible for structure shown Allow acids can form dimers. Allow TE from formula of straight chain molecule with explanation that London forces are higher in a linear molecule (1) (Optically active so) contains chiral C/ C bonded to four different groups The formula suggested must contain a chiral carbon to score this mark This may be shown by a chiral carbon being labelled in the formula (1) Carbonyl compound/ Carbonyl group/ Aldehyde and ketone absent (as no reaction with 2,4-dinitrophenylhydrazine)/ Allow carboxylic acids do not react with 2,4dinitrophenylhydrazine/ (1)	Infrared indicates O-H Infrared indicates alkyl group Just "does not contain $\mathrm{C}=\mathrm{O}$ (group)"	5

Question Number	Acceptable Answers	Reject	Mark
$\mathbf{1 9}$ (e)(ii)	No because the isomers (which are carboxylic acids) contain same bonds / groups (C=O, C-O, C-H etc) (1)	OR Yes because could be distinguished by infrared fingerprint (1)	Yes because spectrum is unique

TOTAL FOR SECTION C = 20 MARKS

Further copies of this publication are available from
Edexcel Publications, Adamsway, Mansfield, Notts, NG18 4FN

Telephone 01623467467
Fax 01623450481
Email publication.orders@edexcel.com
Order Code UA027566 June 2011
 Welsh Assembly Government
For more information on Edexcel qualifications, please visit www.edexcel.com/quals

Rewarding Learning

